Context Identification for Efficient Multiple-Model State Estimation

نویسندگان

  • Sarjoun Skaff
  • Alfred A. Rizzi
  • Howie Choset
چکیده

This paper presents an approach to accurate and scalable multiple-model state estimation for hybrid systems with intermittent, multi-modal dynamics. The approach consists of using discrete-state estimation to identify a system’s behavioral context and determine which motion models appropriately represent current dynamics, and which multiple-model filters are appropriate for state estimation. This improves the accuracy and scalability of conventional multiple-model state estimation. This approach is validated experimentally on a mobile robot that exhibits multi-modal dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Subspace Identification Methods for a Fast Dynamic Model Structure Screening

Modelling multiple-input multiple-output petrochemical industrial dynamic systems is a complex task. Empirical models, based on linear state-space dynamic models often provide a sufficient degree of approximation in a statistically efficient way (i.e. with a small number of parameters). The use of subspace identification methods (SIM) proved to be an useful tool to estimate state-space model pa...

متن کامل

Embedded Crack Identification in Beam-Column Structures Under Axial Load Using an Efficient Static Data Based Indicator

A triangular model base on an investigation which has done by Sinha et al. has been developed for evaluating embedded crack localization in beam-column structures. In the assessment of this member’s behavior, the effects of displacement slope are necessary. In order to propose a crack localization method for embedded crack, an efficient static data based indicator is proposed for this crack in ...

متن کامل

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007